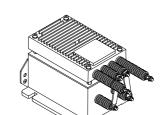

Voltage Transducer LV 200-AW/2/SP75 $V_{_{PN}}$ 4200 V

For the electronic measurement of voltages : DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high voltage) and the secondary circuit (electronic circuit).

Electrical data V _{PN} Primary nominal r.m.s. voltage 4200 V 0 .. ± 6800 V_{P} Primary voltage, measuring range V Measuring resistance \mathbf{R}_{M} $\mathbf{R}_{M \max}$ R_{M min} @ ± 4200 V max 140 with ± 24 V 60 Ω @ ± 6800 V max 66 Ω 60 Secondary nominal r.m.s. current 80 mΑ I_{SN} 4200 V/80 mA Conversion ratio K \mathbf{V}_{c} V Supply voltage (- 30 % .. + 20 %) ± 24 30 + **I**_s \mathbf{V}_{d} Current consumption mΑ R.m.s. voltage for AC isolation test, 50 Hz, 1 mn 12¹⁾ kV 1 ²⁾ k٧ 0.53) k٧ ٧ R.m.s. voltage for partial discharges extinction @ 5 pC 4.8 kV Accuracy - Dynamic performance data Overall Accuracy @ V - 25°C .. + 70°C % X_G ± 1.5 **e** Linearity < 0.1 % Тур Max



General data

T _A	Ambient operating temperature	- 40 + 80	°C	
Τ _s	Ambient storage temperature	- 50 + 85	°C	
N	Turns ratio	105000 / 250	105000 / 2500	
R ₁	Primary resistance @ T _A = 25°C	2.2	MΩ	
R _s	Secondary coil resistance @ $T_A = 80^{\circ}C$	41.5	Ω	
Ρ	Total primary power loss @ V _{PN}	8	W	
m	Mass	2.5	kg	
	Standards 4)	EN 50155		

Notes : 1) Between primary and secondary + shield

- 2) Between secondary and shield
- ³⁾ Between secondary + test and external shield
- ⁴⁾ A list of corresponding tests is available.

Features

- Closed loop (compensated) voltage transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0
- Accessible electronic circuit
- Shield between primary and secondary circuit
- Primary resistor R, incorporated into the housing.

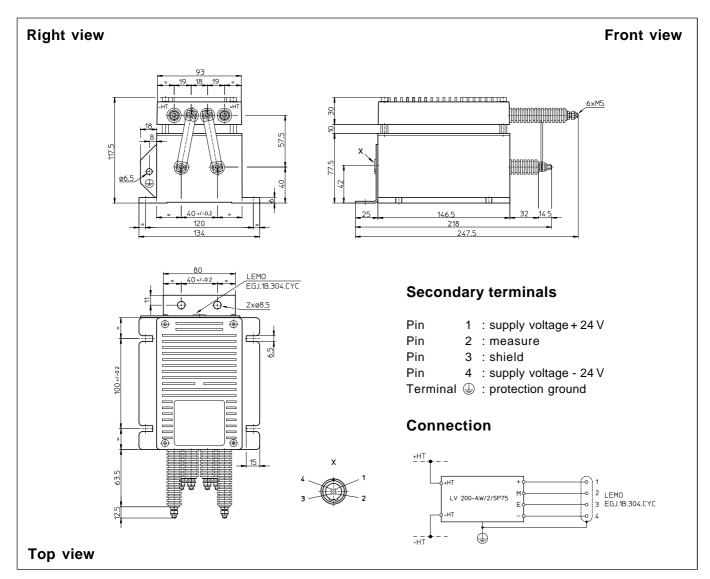
Special features

- $V_{p} = 0 .. \pm 6800 V$
- $T_{A} = -40^{\circ}C ... + 80^{\circ}C$
- **X**_G = 2% (-40°C..-25°C;+70°C..+80°C)
- Built-in primary resistance R, is connected in 2 equal parts to both sides of the primary winding
- Better behaviour with potential variations in common mode
- · Screening around connections of secondarv
- · Connection to secondary circuit on LEMO EGJ.1B.304.CYC.

Advantages

± 0.3

mΑ


μs

- Excellent accuracy
- Very good linearity
- · Low thermal drift
- High immunity to external interference.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Uninterruptible Power Supplies (ASI)
- · Power supplies for welding applications.

Dimensions LV 200-AW/2/SP75 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Fastening
- Connection of primary
- Fastening torque
- Connection of secondary

± 0.5 mm

4 slots Ø 6.5 mm M5 threaded studs 2.2 Nm or 1.62 Lb. - Ft. LEMOEGJ.1B.304.CYC

Remarks

- $\mathbf{I}_{_{\mathrm{S}}}$ is positive when $\mathbf{V}_{_{\mathrm{P}}}$ is applied on terminal +HT.
- The primary circuit of the transducer must be linked to the connections where the voltage has to be measured.